Scan Another

CVE Scan for paketobuildpacks/builder-noble-java-tiny:0.0.77

Docker image vulnerability scanner

1055 Known Vulnerabilities in this Docker Image

0
Critical
6
High
1014
Medium
35
Low
0
Info/ Unspecified/ Unknown
CVE IDSeverityPackageAffected VersionFixed VersionCVSS Score
CVE-2025-22022mediumlinux>=0not fixed7.8

In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Apply the link chain quirk on NEC isoc endpoints Two clearly different specimens of NEC uPD720200 (one with start/stop bug, one without) were seen to cause IOMMU faults after some Missed Service Errors. Faulting address is immediately after a transfer ring segment and patched dynamic debug messages revealed that the MSE was received when waiting for a TD near the end of that segment: [ 1.041954] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ffa08fe0 [ 1.042120] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09000 flags=0x0000] [ 1.042146] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09040 flags=0x0000] It gets even funnier if the next page is a ring segment accessible to the HC. Below, it reports MSE in segment at ff1e8000, plows through a zero-filled page at ff1e9000 and starts reporting events for TRBs in page at ff1ea000 every microframe, instead of jumping to seg ff1e6000. [ 7.041671] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0 [ 7.041999] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0 [ 7.042011] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint [ 7.042028] xhci_hcd: All TDs skipped for slot 1 ep 2. Clear skip flag. [ 7.042134] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint [ 7.042138] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31 [ 7.042144] xhci_hcd: Looking for event-dma 00000000ff1ea040 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820 [ 7.042259] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint [ 7.042262] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31 [ 7.042266] xhci_hcd: Looking for event-dma 00000000ff1ea050 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820 At some point completion events change from Isoch Buffer Overrun to Short Packet and the HC finally finds cycle bit mismatch in ff1ec000. [ 7.098130] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13 [ 7.098132] xhci_hcd: Looking for event-dma 00000000ff1ecc50 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820 [ 7.098254] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13 [ 7.098256] xhci_hcd: Looking for event-dma 00000000ff1ecc60 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820 [ 7.098379] xhci_hcd: Overrun event on slot 1 ep 2 It's possible that data from the isochronous device were written to random buffers of pending TDs on other endpoints (either IN or OUT), other devices or even other HCs in the same IOMMU domain. Lastly, an error from a different USB device on another HC. Was it caused by the above? I don't know, but it may have been. The disk was working without any other issues and generated PCIe traffic to starve the NEC of upstream BW and trigger those MSEs. The two HCs shared one x1 slot by means of a commercial "PCIe splitter" board. [ 7.162604] usb 10-2: reset SuperSpeed USB device number 3 using xhci_hcd [ 7.178990] sd 9:0:0:0: [sdb] tag#0 UNKNOWN(0x2003) Result: hostbyte=0x07 driverbyte=DRIVER_OK cmd_age=0s [ 7.179001] sd 9:0:0:0: [sdb] tag#0 CDB: opcode=0x28 28 00 04 02 ae 00 00 02 00 00 [ 7.179004] I/O error, dev sdb, sector 67284480 op 0x0:(READ) flags 0x80700 phys_seg 5 prio class 0 Fortunately, it appears that this ridiculous bug is avoided by setting the chain bit of Link TRBs on isochronous rings. Other ancient HCs are known which also expect the bit to be set and they ignore Link TRBs if it's not. Reportedly, 0.95 spec guaranteed that the bit is set. The bandwidth-starved NEC HC running a 32KB/uframe UVC endpoint reports tens of MSEs per second and runs into the bug within seconds. Chaining Link TRBs allows the same workload to run for many minutes, many times. No ne ---truncated---

Relevance:

The CVE-2025-22022 is relevant if the Docker image utilizes a vulnerable component within the Java runtime or buildpack dependencies, especially in environments exposed to untrusted inputs. It becomes critical in scenarios where the vulnerability could be exploited to execute arbitrary code or compromise container security. For normal usage with trusted workloads, the risk is likely low. (Note: Relevance analysis is automatically generated and may require verification.)

Package URL(s):
  • pkg:deb/ubuntu/linux@6.8.0-87.88?os_distro=noble&os_name=ubuntu&os_version=24.04
CVE-2025-5245mediumbinutils>=0not fixed7.8
CVE-2019-19378lowlinux>=0not fixed7.8
CVE-2022-3238mediumlinux>=0not fixed7.8
CVE-2018-12931lowlinux>=0not fixed7.8
CVE-2025-21687mediumlinux>=0not fixed7.8
CVE-2017-13165lowlinux>=0not fixed7.8
CVE-2024-50217lowlinux>=0not fixed7.8
CVE-2025-5244mediumbinutils>=0not fixed7.8
CVE-2021-26934lowlinux>=0not fixed7.8

Severity Levels

Exploitation could lead to severe consequences, such as system compromise or data loss. Requires immediate attention.

Vulnerability could be exploited relatively easily and lead to significant impact. Requires prompt attention.

Exploitation is possible but might require specific conditions. Impact is moderate. Should be addressed in a timely manner.

Exploitation is difficult or impact is minimal. Address when convenient or as part of regular maintenance.

Severity is not determined, informational, or negligible. Review based on context.

Sliplane Icon
About Sliplane

Sliplane is a simple container hosting solution. It enables you to deploy your containers in the cloud within minutes and scale up as you grow.

Try Sliplane for free

About the CVE Scanner

What is a CVE?

CVE stands for Common Vulnerabilities and Exposures. It is a standardized identifier for known security vulnerabilities, allowing developers and organizations to track and address potential risks effectively. For more information, visit cve.mitre.org.

About the CVE Scanner

The CVE Scanner is a powerful tool that helps you identify known vulnerabilities in your Docker images. By scanning your images against a comprehensive database of Common Vulnerabilities and Exposures (CVEs), you can ensure that your applications are secure and up-to-date. For more details, checkout the NIST CVE Database.

How the CVE Scanner Works

The CVE Scanner analyzes your Docker images against a comprehensive database of known vulnerabilities. It uses Docker Scout under the hood to provide detailed insights into affected packages, severity levels, and available fixes, empowering you to take immediate action.

Why CVE Scanning is Essential for Your Docker Images

With the rise of supply chain attacks, ensuring the security of your applications has become more critical than ever. CVE scanning plays a vital role in identifying vulnerabilities that could be exploited by attackers, especially those introduced through dependencies and third-party components. Regularly scanning and securing your Docker images is essential to protect your applications from these evolving threats.

Benefits of CVE Scanning

  • Enhanced Security: Detect and mitigate vulnerabilities before they are exploited.
  • Compliance: Meet industry standards and regulatory requirements for secure software.
  • Proactive Maintenance: Stay ahead of potential threats by addressing vulnerabilities early.

The Importance of Patching Docker Images

Patching your Docker images is a critical step in maintaining the security and stability of your applications. By regularly updating your images to include the latest security patches, you can address known vulnerabilities and reduce the risk of exploitation. This proactive approach ensures that your applications remain resilient against emerging threats and helps maintain compliance with security best practices.

Want to deploy this image?

Try out Sliplane - a simple Docker hosting solution. It provides you with the tools to deploy, manage and scale your containerized applications.